Home > SMT Assembly News

Different Types of Sensors with their Applications

In electronics, sensors are components that take inputs from events occurring in the verisimilitude world and convert them into outputs that can be interpreted abstractly by microcontrollers, development boards, computers, etc. Sensors are the most prominent part of an electronics project specifically designed to discern probabilities. Any processor without outputs transferred by sensors, although developed flawlessly for detecting, cannot detect actions to evaluate nor make predictions. Overtly, due to sensors’ significance, there are umpteen sensors with unique abilities, categorized in different types and groups.

Sensors can be categorized in various ways according to requirements and the point of view while classifying them. However, in this article, I will talk about the three main classification methods applied to sensors. The first classification method prioritizes whether sensors utilize an external power source while working in a circuit. In this method, if a sensor requires an external power to adjust its resistance or voltage depending on inputs from the environment, the sensor is categorized under active sensors (components). In other words, an active sensor needs a power supply to generate outputs. For instance, many semiconductors are classified under active sensors. A semiconductor diode consists of the juxtaposition of a layer of n-type and a layer of a p-type semiconductor, called a p-n junction. If you connect the n-type material to the negative terminal of a voltage source and the p-type to the positive terminal, the excess electrons from the n-type material will be repelled by the negative charge and flow into the p-type crystal. Conversely, if a sensor does not require an external power source to generate outputs, it is categorized under passive sensors (components). In other words, passive sensors cannot affect electricity in the circuit directly. For instance, resistors, capacitors, and inductors are categorized under passive sensors. As you can see, without passive sensors, an electronics project and circuit design would not be possible. We can say that passive and active sensors (components) are the building blocks of electronics. For example, the introduction of semiconductors had its greatest impact on computer technology. And, the first commercial computer built entirely with transistors appeared in 1957.

In the second classification method, sensors are categorized regarding in which field they detect qualities such as chemical sensors, physical sensors, biosensors, radioactive sensors, etc. These sensors mostly used in fabrication processes and laboratories to conduct experiments thoroughly. For instance, physical sensors measure a physical quantity, like temperature or humidity, and convert it into a signal which can be read by a processor. In this way, a processor gains the ability to perceive the real world in physical means as a living organism does. There are plenty of devices created with physical sensors that interpret real-world inputs in wearable electronics and robotics. As a sub-category, these sensors can be classified in regard to their conversion types: electrochemical, photoelectric, electromagnetic, biomedical, etc. In other words, in this sub-category, sensors collect inputs from one particular field, interpret that information, convert it into data meaningful in a different field. For instance, electrochemical sensors give information about the composition of a system in real-time by coupling a chemically selective layer to an electrochemical transducer, such as industrial gas detection systems utilized in mines.

In the third and final classification method, sensors are categorized depending on the output signal type they are producing – analog and digital. Digital sensors are able to detect only two possibilities while generating outputs – 1 or 0. In other words, they can only identify whether the experimenting condition is met or not – detected or not detected. For instance, a digital fire detection sensor can only produce true (1) as output when there is a fire or false (0) when there is not. Hence, digital sensors are impeccable for notification systems. On the other hand, analog sensors can detect variables in a range – from 0 to 100%. In that regard, they can generate outputs depending on the emerging level of the experimenting parameters – gas, temperature, magnetic field, etc. Analog sensors work, flawlessly, while conducting experiments to measure the current level of detecting events such as humidity in percentages. For example, a photoresistor detects the light density and generates outputs from 0 – no light – to 100% – when the maximum light density has been reached. So, it is able to measure the weather condition – cloudy, sunny, etc. – depending on the light density instead of merely detecting whether there is bright or dim like a digital sensor. Commonly, analog and digital sensors used by either makers and electronics enthusiasts to create DIY projects with development boards such as Arduino and Raspberry Pi or professionals to design low-cost projects. Also, they are the best option to implement on a PCB board design due to their flexibility and efficacy. Generally speaking, connecting sensors to microcontrollers to create electronics projects requires lots of wiring and soldering; nevertheless, you can get rid of all redundant wiring by designing PCBs (Printed circuit boards) for your electronics projects. Utilizing different sensor types in PCB designs, you can create heterogeneous devices and shields – for Arduino, Raspberry Pi, etc. – with unique abilities and flexibility at low-cost.  Furthermore, nowadays, you do not even need to be in the same place with all the mentioned sensor categories to observe the data produced by them: you can send the data to a server accessible in anywhere and with any device – smartphones, computers, or tablets – in the means of the internet of things (IoT).

In conclusion, the salience of sensors types is due to their ability to convert real-world perceptions into artificial variables that can be interpreted by processors without an impeding error in various fields.

Keywords:

SMT Assembly line, PCB Assembly line, LED Production line, Automatic SMT Assembly line, Semi Automatic SMT Assembly line, JUKI SMT Assembly Line, Samsung SMT Assembly Line, Hanwha SMT Assembly Line, Panasonic SMT Assembly Line, FUJI SMT Assembly Line, Yamaha SMT Assembly Line.


Flason Electronic Co.,ltd provide a full SMT assembly line solutions, including SMT Reflow OvenWave Soldering MachinePick and Place MachineSMT Stencil PrinterSMT AOI SPI MachineSMT Reflow OvenSMT Peripheral EquipmentSMT Assembly lineSMT Spare Parts  etc any kind SMT machines you may need, please contact us for more information: wechat whatsapp:+8613691605420, Skype: flasonsmt, Email: sales@flason-smt.com
FAQ
1) This is the first time I use this kind of machine, is it easy to operate?
There is English manual or guide video that show you how to use machine.
If you still have any question, please contact us by e-mail / skype/ phone /trademanager online service.
2) If machine have any problem after I receive it, how can I do ?
Free parts send to you in machine warranty period.
If the part is less than 0.5KG, we pay the postage.
If it exceeds 0.5KG, you need to pay the postage.
3) MOQ ?
1 set machine, mixed order is also welcomed.
4) How can I buy this machine from you? ( Very easy and flexible !)
A. Consult us about this product on line or by e-mail.
B. Negotiate and confirm the final price , shipping , payment methods and other terms.
C. Send you the proforma invoice and confirm your order.
D. Make the payment according to the method put on proforma invoice.
E. We prepare for your order in terms of the proforma invoice after confirming your full payment.
And 100% quality check before shipping.
F.Send your order by air or by sea.
5)Why choose us ?
A. Gold supplier on Alibaba !
B. Trade assurance to US$54,000 !
C. Best price & Best shipping & Best service !

CONTACT US

Contact: Mr Tommy

Phone: +86 13691605420

Tel: +86 -755-85225569

Email: tommy@flason-smt.com

Add: 94#,Guangtian Road,Songgang Street,Bao an District Shenzhen China